Culleoka Water Supply Corp.

2022 Annual Drinking Water Quality Report PWS ID: TX0430030

Our Drinking Water Meets or Exceeds All Federal (EPA) Drinking Water Requirements

This report complies with the requirements of the U.S. Environmental Protection Agency (EPA) to provide information to the public regarding the public drinking water. This report contains a summary of the quality of the water we provided to our customers in the calendar year 2022. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. We hope this information helps you become more knowledgeable about what's in your drinking water.

Special notice – Required language for ALL community public water supplies: You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (1-800-426-4791).

Public Participation Opportunities

The Board of Directors regularly meets on the third Tuesday of each month at 7:00 PM at the office at 3388 FM 982, Princeton, Texas. The telephone number for emergencies, questions or to learn about future public meetings is 972-736-2592.

Where do we get our drinking water?

Culleoka WSC purchases our water from the City of Princeton, The City of Princeton's water is obtained from Lake Lavon in Collin County, our surface water source. The raw water is treated at the North Texas Municipal Water District (NTMWD) plant in Wylie and furnished to CWSC and surrounding cities through distribution lines maintained by NTMWD. The TCEQ has completed a Source Water Assessment for all drinking water systems that own their sources. The report describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. Some of this source water assessment information is available on Texas Drinking Water Watch at http://dww.tceq.state.tx.us/DWW/. The system from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system, contact our office at 972-736-2592.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming; Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses; Organic chemical

contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems; Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Water Loss Report.

In the water loss audit submitted to the Texas Water Development Board for the time-period of Jan-Dec 2022, our system lost an estimated 12,948,000 gallons of water. It represents 4.0% of the water we purchased, surpassing our goal to keep water loss (non-metered) below 15%. If you have any questions about the water loss audit please call 972-736-2592.

En Espanol

Este informe incluye informacion importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en espanol, favor de llamar al tel. (972) 736-2592.

All drinking water may contain contaminants

When drinking water meets federal standards, there may not be any health-based benefits to purchasing bottled water or point of use devices. All drinking water, **including bottled water**, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. The EPA prescribes regulations which limit the amount of certain impurities in water provided by public water systems. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Secondary Constituents

Many constituents (such as calcium, sodium or iron) which are often found in drinking water can cause taste, color or odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

This page lists all the federally regulated or monitored contaminants which have been found in your drinking water. Contaminants in water provided by Culleoka Water Supply Corp. are well below that required by law and the water quality is much higher than the required standards.

DEFINITIONS

Maximum Contaminant Level (MCL) – The highest permissible level of a contaminant in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) – The level of a contaminant in drinking water below which there is no known or expected health risk. MCLG's allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT) – A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL) – The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG) – The level of a contaminant in drinking water below which there is no known or expected risk to health. ALG's allow for a margin of safety.

Level 1 Assessment – A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Avg – Regulatory compliance with some MCLs are based on running annual average of monthly samples.

ppm – Parts per million. One part per million equals one packet of artificial sweetener sprinkled into 250 gallons of iced tea.

ppb – Parts per billion. One part per billion is equal to one packet of artificial sweetener sprinkled into an Olympic-size swimming pool.

MFL - Million fibers per liter (a measure of asbestos)

Mrem - millirems per year (a measure of radiation absorbed by the body)

NTU – nephelomeric turbidity units (a measure of turbidity)

Maximum Residual Disinfectant Level

Year	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Source of Disinfectant
2022	Chlorine Residual	2.29	0.90	3.80	4	4	ppm	Disinfectant used to control microbes

Regulated Contaminants

Year	Contaminant	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Unit of Measure	Violation	Likely source of contaminant
2022	Haloacetic Acids (HAA5)	21	9.8 – 25.5	No goal for the total.	60	ppb	No	Byproduct of drinking water chlorination.
2022	Total Trihalomethanes (TThm)	44	28.6 - 54.8	No goal for the total.	80	ppb	No	Byproduct of drinking water chlorination.

Year	Inorganic Contaminants	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2022	Nitrate (measured as Nitrogen)	0.0897	0.0897- 0.0897	10	10	ppm	No	Runoff from fertilizer use; Leaching from Septic Tanks, sewage; Erosion of Natural Deposits.

Lead and Copper

Year	Contaminant	MCLG	The 90 th Percentile	# Sites Exceeding Action Level	Action Level	Unit of Measure	Violation	Likely source of Contamination
2022	Lead	0	2.3	0	15	ppb	Νο	Corrosion of household plumbing systems; erosion of natural deposits.

2022	Copper	1.3	0.85	1	1.3	ppm	No	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.
------	--------	-----	------	---	-----	-----	----	---

Lead and Copper Rule

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials.

Required Additional Health Information for Lead

"If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have you water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead."

Turbidity: NOT REQUIRED.

Total Coliform:

0

Co	iform	Bac	teria	а

Maximum Contaminant Level	Total Coliform Maximum Contaminant	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant	Total No. of Positive E. Coli or Fecal Coliform	Violation	Likely Source of Contamination
Goal	Level		Level	Samples		
0	1 positive monthly sample.	0	0	0		Naturally present in the environment.

Fecal Coliform:

NOT DETECTED.

Secondary and Other Not Regulated Constituents: NOT TESTED OR REPORTED, OR NONE DETECTED.

(No associated adverse health effects)

Violations

None

Violation Type	Violation Begin	Violation End	
None			

The following pages contain water quality information from the North Texas Municipal Water District Wylie Water Treatment Plant and this information is required to be included with the Culleoka Water Supply Corporation Water Quality Report for 2022.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2022

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Colifor m or E. Coli Maximu m Contam inant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Viola tion	Likely Source of Contamination
0	1 positive monthly sample	Cust#	0	Cust#	Cust #	Naturally present in the environment.

are used as an indicator that other, potentially harmful, bacteria may be present.

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collec tion Date	Highest Level Detected	Range of Levels Detecte d	MCLG	MC L	Unit s	Viola tion	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2022	CUST #	CUST #	No goal for the total	60	ppb	Cust #	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2022	CUST #	CUST #	No goal for the total	80	ppb	Cust #	By-product of drinking water disinfection.
Bromate	2022	4.9	4.9 - 4.9	5	10	ppb	No	By-product of drinking water ozonation.
NOTE: Not all sample results may have been used evaluation to determine where compliance sampling should occur in the future. TCEQ only requ the running annual average.	uires one s	sample anni	ually for co Range of					
Inorganic Contaminants	Collec tion Date	Highest Level Detected	Levels Detecte d	MCLG	MC L	Unit s	Viola tion	Likely Source of Contamination
Antimony	2022	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2022	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2022	0.061	0.060 - 0.061	2	2	ppm	No	Discharge of drilling wastes; discharge

								from metal refineries; erosion of natural deposits.
Beryllium	2022	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries.
Cadmium	2022	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2022	Levels lower than detect level	0 - 0	100	10 0	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2022	2022	Levels lower than detect level	0 - 0	20 0	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories.
Fluoride	2022	0.688	0.278 - 0.688	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2022	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2022	0.439	0.158 - 0.439	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2022	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore-processing sites; drug factories.

Nitrate Advisory: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue

baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health

care provider.

Radioactive Contaminants	Collec tion Date	Highest Level Detected	Range of Levels Detecte d	MCLG	MC L	Unit s	Viola tion	Likely Source of Contamination
Beta/photon emitters	2022	4.7	4.7 - 4.7	0	50	pCi/ L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2022	Levels lower than detect level	0 - 0	0	15	pCi/ L	No	Erosion of natural deposits.
Radium	2022	Levels lower than detect level	0 - 0	0	5	pCi/ L	No	Erosion of natural deposits.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2022 (Cont.)

Synthetic organic contaminants including pesticides and herbicides	Collec tion Date	Highest Level Detected	Range of Levels Detecte d	MCLG	MC L	Unit s	Viola tion	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2022	Levels lower than detect level	0 - 0	1	3	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfone	2022	Levels lower than detect level	0 - 0	1	2	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfoxide	2022	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide.
Atrazine	2022	0.12	0.10 - 0.12	3	3	ppb	No	Runoff from herbicide used on row crops.

Benzo (a) pyrene	2022	Levels lower than detect level	0 - 0	0	20 0	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2022	Levels lower than detect level	0 - 0	200	20 0	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2022	Levels lower than detect level	0 - 0	400	40 0	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2022	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2022	Levels lower than detect level	0 - 0	0	20 0	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2022	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2022	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2022	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2022	Levels lower than detect level	0 - 0	0	40 0	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2022	Levels lower than detect level	0 - 0	0	20 0	ppt	No	Breakdown of heptachlor.

Hexachlorobenzene	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadiene	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2022	Levels lower than detect level	0 - 0	200	20 0	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Oxamyl [Vydate]	2022	Levels lower than detect level	0 - 0	200	20 0	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2022	Levels lower than detect level	0 - 0	500	50 0	ppb	No	Herbicide runoff.
Simazine	2022	Levels lower than detect level	0 - 0	4	4	ppb	No	Herbicide runoff.
Toxaphene	2022	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.
	College	llinhoot	Range of					
Volatile Organic Contaminants	Collec tion Date	Highest Level Detected	Levels Detecte d	MCLG	MC L	Unit s	Viola tion	Likely Source of Contamination
1, 1, 1 - Trichloroethane	2022	Levels lower than detect level	0 - 0	200	20 0	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2022	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.

1, 1 - Dichloroethylene	2022	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2022 (Cont.)

Volatile Organic Contaminants	Collec tion Date	Highest Level Detected	Range of Levels Detecte d	MCLG	MC L	Unit s	Viola tion	Likely Source of Contamination
Chlorobenzene	2022	Levels lower than detect level	0 - 0	100	10 0	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2022	Levels lower than detect level	0 - 0	0	70 0	ppb	No	Discharge from petroleum refineries.
Styrene	2022	Levels lower than detect level	0 - 0	100	10 0	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.

Tetrachloroethylene	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2022	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2022	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2022	Levels lower than detect level	0 - 0	600	60 0	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2022	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dicholoroethylene	2022	Levels lower than detect level	0 - 0	100	10 0	ppb	No	Discharge from industrial chemical factories.

Turbidity

	Limit (Treatment Technique)	Level Detected	Viola tion	Likely Source of Contamination
Highest single measurement	1 NTU	0.4 NTU	No	Soil runoff.
Lowest monthly percentage (%) meeting limit	0.3 NTU	99.50%	No	Soil runoff.
NOTE: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration.				

Maximum Residual Disinfectant Level

Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample	MR DL	MRD LG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2022	Cust#	Cust#	Cust#	4.0 0	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2022	0.00	0	0.27	0.8 0	0.80	ppm	Disinfectant.
Chlorite	2022	0.145	0	0.72	1.0 0	N/A	ppm	Disinfectant.

NOTE: Water providers are required to maintain a minimum chlorine

disinfection residual level of 0.5 parts per million (ppm) for systems

disinfecting with chloramines and an annual

average chlorine disinfection residual level of between 0.5 (ppm) and 4 parts per million (ppm).

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set.

Cryptosporidium and Giardia

Contaminants	Collec tion Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Cryptosporidium	2022	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste.
Giardia	2022	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste.

NOTE: Levels detected are for source water, not for drinking water. No cryptosporidium or giardia

were found in drinking water.

NTMWD Wylie Water Treatment PlantsWater Quality Data for Year 2022 (Cont.)

Lead and Copper

Lead and Copper	Date Sampl ed	Action Level (AL)	90th Percenti le	# Sites Over AL	Unit s	Viola tion	Likely Source of Contamination
Lead		15	CUST #	CUST #	ppb		Corrosion of household plumbing systems; erosion of natural deposits.
Copper		1.30	CUST #	CUST #	ppm		Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.

ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead

in drinking water is primarily from materials and components associated with service lines and home plumbing. [Customer] is responsible for providing high quality drinking water,

but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by

flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or

at http://www.epa.gov/safewater/lead.

Unregulated Contaminants

Contaminants	Collec tion Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2022	CUST #	CUST #	ppb	By-product of drinking water disinfection.
Bromoform	2022	CUST #	CUST #	ppb	By-product of drinking water disinfection.
Bromodichloromethane	2022	CUST #	CUST #	ppb	By-product of drinking water disinfection.
Dibromochloromethane	2022	CUST #	CUST #	ppb	By-product of drinking water disinfection.

NOTE: Bromoform, chloroform, bromodichloromethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at the entry point to distribution.

Secondary and Other Constituents Not Regulated

Contaminants	Collec tion Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Aluminum	2022	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Calcium	2022	69.8	32.2 - 69.8	ppm	Abundant naturally occurring element.
Chloride	2022	107	30.0 - 107	ppm	Abundant naturally occurring element; used in water purification; by- product of oil field activity.
Iron	2022	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Magnesium	2022	9.70	9.61 - 9.70	ppm	Abundant naturally occurring element.
Manganese	2022	0.159	0.004 - 0.159	ppm	Abundant naturally occurring element.
Nickel	2022	0.0098	0.0069 - 0.0098	ppm	Erosion of natural deposits.
рН	2022	9.2	7.0 - 9.2	units	Measure of corrosivity of water.
Silver	2022	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.

Sodium	2022	95.4	26.5 - 95.4	ppm	Erosion of natural deposits; by-product of oil field activity.
Sulfate	2022	171	84.2 - 171	ppm	Naturally occurring; common industrial by-product; by- product of oil field activity.
Total Alkalinity as CaCO3	2022	139	69 - 139	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Solids	2022	492	269 - 492	ppm	Total dissolved mineral constituents in water.
Total Hardness as CaCO3	2022	194	90 - 194	ppm	Naturally occurring calcium.
Zinc	2022	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring element used in the metal industry.

Violations Table

Violation Type	Violati on Begin	Violation End	Violation Explanation